Please read this about paths and files before you proceed!

Note that if work from the path where all the downloadable parts are downloaded to, you don’t need to change the paths
(leave them as is, but do evaluate the sections)
The paths simply serve as an example of how you can set up your analysis structure, which is especially useful if you have more than one subject

Set up general paths

Change these to appropriate paths for your operating system and setup
Note that if work from the path where all the downloadable parts are downloaded to, you don’t need to change the paths
(leave them as is, but do evaluate the section)

%% paths

addpath /home/lau/matlab/fieldtrip-20170613_workshop_natmeg/
ft_defaults

raw_meg_path = '/archive/20067_workshop_source_reconstruction/MEG/';
meg_path = '/home/share/workshop_source_reconstruction/data/MEG/';
mri_path = '/home/share/workshop_source_reconstruction/data/MRI/';
set(0, 'DefaultAxesFontWeight', 'bold', 'defaultaxesfontsize', 36, 'defaultlinelinewidth', 2);

Set up subject specific paths

Make subject and recording specific paths (the cell array “subjects_and_dates” can be expanded)

%% subjects and dates

subjects_and_dates = ...
                    {
                        'NatMEG_0177/170424/'
                    };

output_path = fullfile(meg_path, subjects_and_dates{1});

events = [1 2 4 8 16]; %% right little, right ring, right middle, right index, right thumb

Load files necessary for the beamforming

We are loading four different files here:

  1. We are loading the TFRs to locate interesting targets for beamformer source reconstruction
  2. We are loading the headmodel for the MEG data
  3. We are loading the headmodel for the EEG data
  4. We are loading the preprocessed data (baseline_data) on which we will do the actual source reconstruction
%% go to relevant path and load data

cd(output_path)
disp 'Loading input data'
load combined_tfrs.mat
load headmodel_meg.mat
load headmodel_eeg.mat
load baseline_data.mat
load cleaned_downsampled_data.mat
disp Done

Set channels

Here you can set which channels you want to base the source reconstruction on
You only need to change to one of the three options specified

%% set channels

channels = 'meggrad'; %% either 'megmag', 'meggrad' or 'eeg'

if strcmp(channels, 'eeg')
    headmodel = headmodel_eeg;
    sensor_type = 'eeg';
else
    headmodel = headmodel_meg;
    sensor_type = 'meg';
end

Identify interesting features

Plot all the channels in the data
Notice (at least) three features of interest
Please explort the plots!

  1. The so-called beta rebound from about 700 to 1000 msec at around 16 Hz
  2. The so-called mu desynchronization from about 300 to 800 msec at around 10 Hz
  3. The so-called high-beta desynchronization from about 200 to 500 msec at around 22 Hz
%% identify interesting features in the data

% pick an event
event_index = 1; %% can be anything from 1-5

cfg = [];
cfg.layout = 'neuromag306cmb.lay'; %% this is combined gradiometers, you can also choose <'neuromag306mag.lay'> or <'neuromag306eeg1005_natmeg.lay'
cfg.baselinetype = 'relative'; %% absolute power is not terribly meaningful; therefore we use 'relative' to look at increases and decreases in power relative to the overall power level
cfg.baseline = [-Inf Inf]; %% from min to max
cfg.colorbar = 'yes'; %% show the interpretation of the colours
% cfg.zlim = [0.6 1.6]; %% play around with this parameter to familiarize yourself with these plots

ft_multiplotTFR(cfg, combined_tfrs{event_index});

Single channel pair plot, MEG0432+0433

Single channel pair plot, MEG2142+2143

Visualizing channels

%% channels that we'll plot throughout

colours = ones(306, 3);
tactile_channel = 'MEG0432';
occipital_channel = 'MEG2142';
tactile_channel_index = find(strcmp(baseline_data.label, tactile_channel));
occipital_channel_index = find(strcmp(baseline_data.label, occipital_channel));

colours(tactile_channel_index, :)   = [1 0 0]; %% make red
colours(tactile_channel_index + 1, :)   = [1 0 0]; %% make red
colours(occipital_channel_index, :) = [0 0 1]; %% make blue
colours(occipital_channel_index + 1, :) = [0 0 1]; %% make blue

figure('units', 'normalized', 'outerposition', [0 0 1 1]);
hold on
sensors = cleaned_downsampled_data.grad;
ft_plot_sens(sensors, 'facecolor', colours, 'facealpha', 0.8);

ft_plot_vol(ft_convert_units(headmodel_eeg, 'cm'));

view([-45 25])

Showing where the channels are (we will use these throughout)

The beta rebound

We will here focus on reconstructing the activity underlying the beta rebound

  1. We crop the data to find the time period of interest (690 to 970 msec)
  2. We define a baseline period of similar duration. We will compared the time period of interest against this, since the power estimates that the beamformer results in are not terribly informative
  3. We also making a combination of the time period of interest and the baseline. (Its use will become apparent later)
%% time window of interest Beta Rebound

beta_toi = [0.690 0.970];
baseline_toi = [-0.500 -0.220];
n_events = length(events);

tois_rebound = cell(1, n_events);
tois_baseline  = cell(1, n_events);

for event_index = 1:n_events
    
    event = events(event_index);
    
    cfg = [];
    cfg.toilim = beta_toi;
    cfg.trials = baseline_data.trialinfo == event;
    
    tois_rebound{event_index} = ft_redefinetrial(cfg, baseline_data);
    
    cfg.toilim = baseline_toi;
    
    tois_baseline{event_index} = ft_redefinetrial(cfg, baseline_data);
    
end

% combined data

tois_combined = cell(1, n_events);

for event_index = 1:n_events

    cfg = [];

    tois_combined{event_index} = ft_appenddata(cfg, tois_rebound{event_index}, tois_baseline{event_index});
    
end

Example plot timelocked

The main lesson here is that there is no timelocked activity

%% example plot tois

event_index = 1;
channel_of_interest = 'MEG0431';
toi_rebound  = tois_rebound{event_index};
toi_baseline = tois_baseline{event_index};
channel_index = strcmp(channel_of_interest, toi_rebound.label);
n_samples = length(toi_rebound.time{1});
n_trials = length(toi_rebound.trial);

figure('units', 'normalized', 'outerposition', [0 0 1 1]);
hold on
for n_trial = 1:n_trials
    plot(1:n_samples, toi_rebound.trial{n_trial}(channel_index, :), 'r')    
end
xlabel('Sample no');
ylabel('Magnetic Field Strength (T)');
title(channel_of_interest)
for n_trial = 1:n_trials
    plot(1:n_samples, toi_baseline.trial{n_trial}(channel_index, :), 'b')
end

Timelocked trials, rebound=red

Timelocked trials, rebound=red, baseline=blue

Fourier analyses

Here we make fourier decompositions of the time courses for each of the times of interest

%% fourier, decomposition Beta rebound

fouriers_rebound  = cell(1, n_events);
fouriers_baseline = cell(1, n_events);
fouriers_combined = cell(1, n_events);
beta_foi = [16 16];

for event_index = 1:n_events
    
    cfg = [];
    cfg.method = 'mtmfft';
    cfg.output = 'fourier';
    cfg.taper = 'hanning';
    cfg.channel = channels;
    cfg.foilim = beta_foi;
    cfg.keeptrials = 'yes';
    cfg.pad = 'nextpow2';
    
    fouriers_rebound{event_index} = ft_freqanalysis(cfg, tois_rebound{event_index});
    fouriers_baseline{event_index} = ft_freqanalysis(cfg, tois_baseline{event_index});
    fouriers_combined{event_index} = ft_freqanalysis(cfg, tois_combined{event_index});
    
end

Example plot fourier

%% example plot fourier

event_index = 1;
fourier_rebound = fouriers_rebound{event_index};
fourier_baseline = fouriers_baseline{event_index};

cfg = [];
cfg.method = 'svd';

cmb_fourier_rebound  = ft_combineplanar(cfg, fourier_rebound);
cmb_fourier_baseline = ft_combineplanar(cfg, fourier_baseline);

channel_of_interest_tactile = 'MEG0422+0423';
channel_of_interest_occipital = 'MEG2142+2143';
channel_index_tactile = strcmp(cmb_fourier_rebound.label, channel_of_interest_tactile);
channel_index_occipital = strcmp(cmb_fourier_rebound.label, channel_of_interest_occipital);
n_trials = length(cmb_fourier_rebound.trialinfo);

figure('units', 'normalized', 'outerposition', [0 0 1 1]); %% make full screen figure
hold on %% allows for multiple plot calls
% plot all channels
plot(1:n_trials, real(cmb_fourier_rebound.fourierspctrm(:, :)).^2, 'r'); %% plot rebound in red
plot(1:n_trials, real(cmb_fourier_baseline.fourierspctrm(:, :)).^2, 'b'); %% plot baseline in blue
xlabel('Trial no')
ylabel('Power of beta band');
% highlight single trials
plot(1:n_trials, real(cmb_fourier_rebound.fourierspctrm(:, channel_index_tactile)).^2, 'k', 'linewidth', 10); %% plot rebound tactile in black
plot(1:n_trials, real(cmb_fourier_rebound.fourierspctrm(:, channel_index_occipital)).^2, 'm', 'linewidth', 10); %% plot rebound occipital in magenta

All channels, red=rebound, blue=baseline

With highlights, black=“tactile”, magenta=‘occipital’

Create a leadfield and grid

Create a grid around the brain and estimate the leadfield for each of the grid points in the brain

The leadfield is an important concept, which may appear confusing at first

  1. For any given source (a grid point inside the brain) it is calculated how each sensor (magnetomer, gradiometer or electrode) sees (how much T, T/m or V would it pick up) a source with unit strength (1 nAm)
  2. One might say that it says: “For a given source, if it is active, how would it be seen by the different sensors”
  3. It is also sometimes called the forward model
%% leadfield beamformer

cfg = [];
cfg.grad = baseline_data.grad; %% magnetometer and gradiometer specification
cfg.elec = baseline_data.elec; %% electrode specification
cfg.headmodel = headmodel; %% headmodel used
cfg.channel = channels;
cfg.grid.resolution = 1; %% resolution of ...
cfg.grid.unit = 'cm'; %% ... 1 cm
cfg.senstype = sensor_type;

leadfield = ft_prepare_leadfield(cfg);

cfg.channel = 'megmag';
leadfield_mag = ft_prepare_leadfield(cfg);
%% plot grid and headmodel

figure('units', 'normalized', 'outerposition', [0 0 1 1]);
hold on
ft_plot_mesh(ft_convert_units(leadfield, 'mm'));
ft_plot_vol(headmodel);
view([-45 20])

Show brain inside grid

Show leadfield (code to generate not shown)

  1. The centre of the blue circle is the grid point of the source (the size is just for visibility)
  2. The hotter the red colour, the more strongly the given sensor would see it

Now we are finally able to do the source analysis using the DICS beamformer

This is a spatially adaptive filter, allowing us to estimate the amount of activity at any given location in the brain. The inverse filter is based on minimizing the source power (or variance) at a given location, subject to ‘unit-gain constraint’. This latter part means that, if a source had power of amplitude 1 and was projected to the sensors by the lead field, the inverse filter applied to the sensors should then reconstruct power of amplitude 1 at that location.
(taken from http://www.fieldtriptoolbox.org/tutorial/aarhus/beamformingerf?s[]=plot&s[]=spatial&s[]=filter)

%% source analysis

beamformers_rebound  = cell(1, n_events);
beamformers_baseline = cell(1, n_events);
beamformers_combined = cell(1, n_events);

for event_index = 1:n_events
    
    cfg = [];
    cfg.method              = 'dics'; % Dynamic Imaging of Coherent Sources (Gross et al. 2001)
    cfg.frequency           = fouriers_rebound{1}.freq; %% the frequency from the fourier analysis (16 Hz)
    cfg.grid                = leadfield; %% our grid and the leadfield
    cfg.headmodel           = headmodel; %% our headmodel (tells us how the magnetic field/electrical potential is propagated)
    cfg.dics.projectnoise   = 'yes'; %% estimate noise
    cfg.dics.lambda         = '10%'; %% how to regularise
    cfg.dics.keepfilter     = 'yes'; %% keep the spatial filter in the output
    cfg.dics.realfilter     = 'yes'; %% retain the real values
    cfg.channel             = channels;
    cfg.senstype            = sensor_type;
    cfg.grad                = baseline_data.grad;
    cfg.elec                = baseline_data.elec;
    
    beamformers_combined{event_index} = ft_sourceanalysis(cfg, fouriers_combined{event_index});
    
    cfg.grid.filter = beamformers_combined{event_index}.avg.filter; %% the filter is shared between the rebound and the baseline and is based on the combined fourier analysis
    
    beamformers_rebound{event_index} = ft_sourceanalysis(cfg, fouriers_rebound{event_index});
    beamformers_baseline{event_index} = ft_sourceanalysis(cfg, fouriers_baseline{event_index});
    
end

Plot sensitivity profiles of the two channels on the brain

Note the centre of the head bias

%% plot sensitivity profiles of the two channels on the brain

load mri_resliced.mat

close all

beam = beamformers_rebound{1}; %% choose a given source reconstruction
filter = beam.avg.filter(:); %% get the spatial filter
n_grid_points = length(filter); 
n_channels = length(fouriers_rebound{1}.label);
norms = zeros(n_channels, n_grid_points); %% prepare to get the magnitudes in each of the three directions x, y, z

for n_grid_point = 1:n_grid_points
    for n_channel = 1:n_channels
        if ~isempty(filter{n_grid_point})
            norms(n_channel, n_grid_point) = norm(filter{n_grid_point}(:, n_channel)); %% get the magnitudes for each combination of channels and grid points that are inside
        end
    end
end

channel_of_interest_tactile = 'MEG0432'; %% a central sensor
channel_of_interest_occipital = 'MEG2142'; %% an occipital sensor
channel_index_tactile = strcmp(fourier_rebound.label, channel_of_interest_tactile);
channel_index_occipital = strcmp(fourier_rebound.label, channel_of_interest_occipital);

beam.tactile_filter = norms(channel_index_tactile, :)'; %% add field that can be plotted for each channel
beam.occipital_filter = norms(channel_index_occipital, :)';

% interpolate onto mri

cfg = [];
cfg.downsample = 2;
cfg.parameter = 'tactile_filter';

beam_inter_tactile = ft_sourceinterpolate(cfg, beam, mri_resliced);

cfg = [];
cfg.downsample = 2;
cfg.parameter = 'occipital_filter';

beam_inter_occipital = ft_sourceinterpolate(cfg, beam, mri_resliced);

cfg = [];
cfg.opacitylim = [0 5];
cfg.funparameter = 'tactile_filter';
cfg.location = [-27.5 6.5 100.5];

ft_sourceplot(cfg, beam_inter_tactile);
set(gcf,'units','normalized','outerposition',[0 0 1 1])

cfg = [];
cfg.opacitylim = [0 5];
cfg.funparameter = 'occipital_filter';
cfg.location = [-15.5 -51.5 40.5];

ft_sourceplot(cfg, beam_inter_occipital);
set(gcf,'units','normalized','outerposition',[0 0 1 1])

Tactile channel

Occipital channel

Plot Source reconstructions

The centre of the head bias means that the source reconstructions in themselves are not readily interpretable

%% plot non-contrasted

cfg = [];
cfg.downsample = 2;
cfg.parameter = 'pow';

beam_inter = ft_sourceinterpolate(cfg, beam, mri_resliced);

cfg = [];
cfg.funparameter = 'pow';

ft_sourceplot(cfg, beam_inter);
set(gcf,'units','normalized','outerposition',[0 0 1 1])

Make a contrast between the rebound and the baseline

Here we take the difference between the source reconstructions and divide it by the baseline power
This will give us the relative increase in power

%% contrasts

beamformers_contrasts = cell(1, n_events);

for event_index = 1:n_events
    
    contrast = beamformers_rebound{event_index}; %% just make a copy
    contrast.avg.pow = (beamformers_rebound{event_index}.avg.pow - beamformers_baseline{event_index}.avg.pow) ./ ...
        beamformers_baseline{event_index}.avg.pow;
    
    beamformers_contrasts{event_index} = contrast;
    
end

Interpolate pow data onto the mri of the participant

%% contrasts interpolated onto mri

load mri_resliced.mat
beamformers_contrasts_interpolated = cell(1, n_events);

for event_index = 1:n_events
    
    cfg = [];
    cfg.downsample = 2;
    cfg.parameter = 'pow';
    
    beamformers_contrasts_interpolated{event_index} = ft_sourceinterpolate(cfg, beamformers_contrasts{event_index}, mri_resliced);
    
end

Plot all contrasts

%% plot source analyses

close all
names = {'right_little_finger' 'right_ring_finger' 'right_middle_finger' 'right_index_finger' 'right_thumb'};

for event_index = 1:n_events
    
    to_plot = beamformers_contrasts_interpolated{event_index};
    max_pow = max(to_plot.pow);
    min_pow = min(to_plot.pow);

    cfg = [];
    cfg.method = 'ortho';
    cfg.funparameter = 'pow';
    cfg.maskparameter = cfg.funparameter;
    cfg.funcolorlim = [0 max_pow];
    cfg.opacitylim = [0 max_pow];
    cfg.location = [-29.5 10.5 100.5];

    ft_sourceplot(cfg, to_plot);
    set(gcf,'units','normalized','outerposition',[0 0 1 1])
    
end

Right little finger

Right ring finger

Right middle finger

Right index finger

Right thumb